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Preparation and characterization of (K0.5Na0.5)NbO3 ceramics
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Abstract

In this paper the preparation and characterization of the ceramic material (K0.5Na0.5)NbO3 (KNN) has been studied. Although conventional
processing of KNN is often reported to result in sintered bodies lacking sufficient density, samples produced in this work exhibit theoretical
density over 95% and yield superior piezoelectric properties than those obtained by the same method and reported previously. The
electromechanical coupling coefficient in the thickness direction,kt, is found to reach 45%. Apart fromkt, the piezoelectric coefficients in
longitudinal and planar directions (d33 of 100pC/N andd31 of 43pC/N), hysteresis loop, pyroelectric coefficient measurements and dielectric
properties are presented.
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. Introduction

Potassium sodium niobate (K1−x,Nax)NbO3 ceramics are
eported to show desirable properties for solid ultrasonic
elay-line applications and ultrasonic transducers. Its low
ielectric constant and high electromechanical coupling co-
fficient contribute to this.1,3 A maximum value of radial
oupling coefficient,kp, is obtained by 50% Na addition to
he KNbO3.1 This composition is reported to be composed
f a virtual morphotropic phase boundary, where the total
olarization can be maximized due to increased possibility
f domain orientation.2 Exact crystallographic nature of this
oundary in KNN is presently not well understood and it
ay be different than the one in lead-zirconate titanate solid

olution.
However, a major problem concerning this material is

eported to be difficulty in obtaining samples with a high
ensity by conventional preparation and sintering.2–5 A de-
iation from stoichiometry resulting in the formation of extra
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phases, a relatively low sintering temperature compar
other piezoelectric materials, and the difficulty of obtain
a fine microstructure during sintering are some of the fac
which make the densification of KNN ceramics diffic
An alternative solution for this problem has been the us
hot pressing pursued by many researchers.4,5 Although this
method yields high densities and better properties comp
to conventional air-sintered KNN, it still needs careful inv
tigation and optimization of sintering parameters to re
in reproducible and high quality ceramics. Additionally, i
a more expensive route compared to conventional sinte
The goal of this work has been to produce KNN sample
conventional air sintering in attempt to reach high dens
and characterize the material.

2. Preparation of samples

Pure grades of K2CO3, Na2CO3 and Nb2O5 powders
(>99.95%) were used as initial materials. The use of
different powders with carbonate origin requires extra
to be taken against humidity. Thermo gravimetric ana
e Lausanne (EPFL), Laboratoire de Production Microtechnique (LPM),
H-1015 Lausanne, Switzerland. Tel.: +41 21 693 77 58;

ax: +41 21 693 38 91.
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(TGA) shows that the powders lose weight up to 180◦C,
which is equivalent to the water absorbed. Therefore, in
order to obtain the stoichiometric material composition
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Fig. 1. X-ray pattern of calcined powder.

all powders were separately dried in an oven at 220◦C
for 4 h prior to mixing. The stoichiometric amounts were
transferred to a 200 ml plastic jar, which was previously
filled with 5 mm diameter zirconia grinding balls and 40 ml
of acetone. The total amount of milled powder was 20 g.
The batch was ball-milled at 97 rpm for 24 h. At the end
of the milling, the slurry was dried and kept in an oven at
120◦C.

Calcination was performed in an alumina crucible that was
heated to 120◦C before the transfer of the dried powder. After
the transfer of the powder, it was heated at a rate of 3◦C/min
to 825◦C and kept at that temperature for 4 h. The cooling
rate was 10◦C/min. The X-ray pattern of a calcined powder
obtained by this method is given inFig. 1.

Pellets of 7 mm diameter were uniaxially pressed at
25 MPa and sintered at 1114◦C for 2 h with a heating rate
of 5◦C/min and cooling rate of 10◦C/min in oxygen rich at-
mosphere, which yielded relative density up to 95–96% (the-

Fig. 2. X-ray pattern of a sintered KNN sample.

oretical density is 4.51 g/cm3).5 Densities were measured by
Archimede’s technique. An X-ray pattern and SEM image of
a sample prepared by this method is given inFigs. 2 and 3.

XRD patterns of both the calcined powder and the sin-
tered pellet are in agreement with the expected orthorhombic
phase. Shoulders on the right hand side of the powder X-
ray pattern could be linked to slight off-stoichiometry. These
additional features disappear in sintered samples.

3. Characterization

The samples were prepared in varying aspect ratios for dif-
ferent measurements. The aspect ratio selected for resonance
measurement was around 10 as required by IEEE standard,6

for quasistatic measurements of the longitudinal piezoelectric
coefficient,d33, around 3–47 and for hysteresis and dielec-
tric measurements around 14 to minimize electric field. The

face of
Fig. 3. Fractured sur
 a sintered KNN sample.
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Fig. 4. Temperature vs. dielectric constant.

largest surfaces of the samples were electroded with gold for
electrical characterization measurements.

3.1. Dielectric constant versus temperature

Dielectric constant versus temperature data was recorded
at five frequencies from 102 to 106 Hz using HP 4282A-LCR
bridge. The information on dielectric constant and losses are
presented inFigs. 4 and 5. Fig. 6 shows the losses up to
230◦C. The material possesses two maximums in dielectric
values around 400 and 190◦C, each representing the cubic to
tetragonal and tetragonal to orthorhombic phase transitions,
respectively.

Low frequency dispersion can be observed above 200◦C
and it might be linked to hygroscopic sensitivity of the
material.8 Formation of a hydroxide at the material surface,
can well lead to such additional loss mechanism. This behav-
ior is also seen in most of the KNN samples, prepared by hot
forging with relative densities reaching close to 100%.

F and
1

Fig. 6. tanδ vs. temperature up to 220◦C. (The inconsistent data at the lowest
frequency is due to the noise.)

3.2. Polarization versus electric field

Polarization versus field behavior was investigated at room
temperature (Fig. 7). At maximum field, the coercive field,
Ec, has a value of 20 kV/cm and the remanent polarization is
0.20 C/m2. Loop pinching is observed at lower fields, which
is linked to a preferred orientation of defect dipoles in the
material. At fields higher than 50 kV/cm, pinching vanishes
and well formed symmetric hysteresis loops are observed.

3.3. Poling and resonance measurements

The electric field was applied through the thickness direc-
tion of the electroded pellets. The samples were heated over
the tetragonal to orthorhombic phase transition temperature,
which is around 200◦C, and cooled down to room tempera-
ture under 15 kV/cm of electric field.

In order to get the maximum polarization, different pa-
rameters were investigated such as effect of electric field,
ig. 5. tanδ vs. temperature. (There is no maximum for losses at 100
000 kHz around 400◦C.)
 Fig. 7. Hysteresis loops at room temperature.
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Table 1
Results of the resonance measurements

ε33/ε0 472
σ12 0.33
S11 (m2/kg) 8.7× 10−12

d31 (pC/N) 43.4
k31 0.23
kp 0.39
kt 0.45

time and temperature. It is observed that best properties are
obtained (Table 1) using the technique1 described above.

Resonance measurements were carried out with HP
4194A LCR-meter. The poled sample was connected to the
bridge carefully not to create any stresses on it. All the prop-
erties were calculated from the equation of admittance for
a disc-shaped sample (thickness mode coupling coefficient
from6).

3.4. Longitudinal d33 measurements

The longitudinal piezoelectric charge coefficient was mea-
sured under a sinusoidal AC pressure field. The AC pressure
range was from 1.5 to 6.5 MPa. The details of experimental
procedure are described elsewhere.9 The frequency depen-
dence of the piezoelectric coefficient was examined under a
DC pressure of 16 MPa.Fig. 8shows data for a sample, which
was poled by field cooling.

The motion of domain walls, which are activated by the
applied AC pressure leads to a high value of piezoelectric
coefficient apart from intrinsic effect. This is the irreversible
contribution and it is originated basically from the ferroe-
lastic nature of the non-180◦ domain walls. Slowing down
of response at high frequencies is seen in a lower value
of d33.

F
p

Fig. 9. Material response (rectangles) to changing temperature (triangles)
conditions. (I pyro filtered is the pyroelectric current that is created as a result
of charge release on the specimen surface due to temperature variations.)

3.5. Pyroelectric measurements

Measurements were made using a heat regulator, which
has a sensitivity of 0.001 K/step, KH function generator and
a HP 3478 A multimeter. Temperature range is selected be-
tween 27 and 28◦C as shown inFig. 9. Pyroelectric effect
shows itself as release of charges on the surface of the spec-
imen upon temperature change. These charges are detected
as a current that is called pyroelectric current and presented
by Ip. One can see pyroelectric current on the right hand
side y-axis of Fig. 9 and the temperature on the left. The
average pyroelectric coefficient obtained from this measure-
ment gives a value of 140�C/m2 K, which is comparable to
83�C/m2 K of LiNbO3 single crystal10 and 110�C/m2 K of
lead germanate11.

4. Study of aging

The sintered ceramics were observed to have increasing
dielectric losses starting from the very initial time of prepa-
ration (Fig. 10).

Although it is not completely understood, it is estimated
to be linked to humidity sensitivity of these ceramics. We
probably have a case of absorbtion and desorbtion of humid-
i the
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ig. 8. Longitudinal piezoelectric coefficient,d33, as a function of the AC
ressure.
ty on a long time scale. It is important to notice that
ielectric loss at 1 MHz is below 0.05 through the wh

ime period, which is quite promising for device ap
ations.

In addition to the aging of dielectric loss we conduc
nother study on aging of electromechanical coupling co
ient in thickness direction,kt, which is the figure of merit fo
ltrasonic transducers operating at high frequencies.Fig. 11
hows the results.
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Table 2
Comparison of properties obtained by different groups

Properties Air-sintered,
Jaeger–Egerton4,
K0.5Na0.5NbO3

Air-sintered, Kosec5,
K0.5Na0.5NbO3

Air-sintered, this study,
K0.5Na0.5NbO3

Hot-pressed,
Jaeger–Egerton4,
K0.5Na0.5NbO3

Hot-forged Schultze3,
K0.5Na0.5NbO3 + 4 mol%
Ba

ρ (103 kg/m3) 4.25 4.20 4.30 4.46 4.28
%TD 94.24 93.13 95.3 98.89 94.90
d33 (pC/N) 80 110 160 115
d31 (pC/N) 32 43.4 49
kp 0.36 0.23 0.39 0.45 0.37
kt 0.45
k31 0.22 0.23 0.27
σ12 0.27 (assumed) 0.33 0.27 (assumed)

Fig. 10. Aging of dielectric loss in virgin sample.

At this point it is important to understand whether the
observed decrease comes from a possible humidity effect or
relaxation of domain walls. In order to approach this problem,
a sample was put into oven at 100◦C for 3 h after which the
dielectric losses andkt was checked. It was observed that the
former dropped below 0.05 at all frequencies whereas, the

Fig. 11. Aging of the thickness coupling coefficient,kt, in a KNN ceramic.

latter remained constant. So, it can be concluded that this
drop from 0.45 to 0.36 in 12 weeks seems to be result of
domain wall relaxation process.

5. Discussions

A comparison of properties, which are obtained by
different processing routes of different groups regarding
(K0.5Na0.5)NbO3 ceramic is shown inTable 2.

Properties of ceramics produced in this study using con-
ventional sintering are comparable to hot forged/pressed
ones. High piezoelectric coefficients and coupling coeffi-
cients demonstrate this fact. According to our observations
high properties are related to keeping material free of humid-
ity and as close to stoichiometry as possible.

6. Conclusions

An intensive study on processing and properties of KNN
ceramic using conventional powder synthesis was conducted.
Some of the interesting aspects related to processing and
properties can be summarized as in the following:

1. The processing of KNN needs extreme control of many
parameters starting from initial powder characteristics till

2 .
g the

3 ling
art-
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rties
sintering atmosphere.
. The aging of properties (dielectric loss,kt) is observed

It is seen that dielectric losses decrease after heatin
samples in oven at 100◦C.

. The maximum polarization is obtained by field coo
under an electric field of 15 kV/cm, which is applied st
ing from the tetragonal to orthorhombic transition tem
ature.

. Excellent electromechanical coupling coefficients bo
radial and thickness directions (kp of 0.39 andkt of 0.45)
are reached.
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